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Abstract. The pion-nucleon sigma-term is extracted on the basis of the soliton picture of the nucleon from
the mass spectrum of usual and the recently observed exotic baryons, assuming that they have positive
parity. The value found is consistent with that inferred by means of conventional methods from pion-
nucleon scattering data. The study can also be considered as a phenomenological consistency check of the
soliton picture of baryons.

PACS. 12.39.Ki Relativistic quark model – 12.38.Lg Other nonperturbative calculations – 14.20.-c Baryons
(including antiparticles)

1 Introduction

No experimental method is known to directly measure the
pion-nucleon sigma-term σπN [1,2]. An indirect method
consists in exploring a low-energy theorem [3] which re-
lates the value of the scalar-isoscalar form factor σ(t) at
the point t = 2m2

π to the isospin-even pion-nucleon scat-
tering amplitude. Earlier analyses by Koch [4] and Gasser
et al. [5] gave for σ(2m2

π) a value of about 60MeV, cf.
fig. 1. From the difference σ(2m2

π) − σ(0) found to be
15MeV by Gasser et al. [5], one obtains for σπN ≡ σ(0) a
value of about 45MeV which was generally accepted until
the late 1990s.

Recent analyses [6–8], however, tend to yield higher
values for σ(2m2

π) in the range (80–90) MeV, cf. fig. 1, due
to the impact of more recent and accurate data [9]. This re-
sults in a value of σπN around 70MeV. Such a large value
of σπN causes puzzles. According to a standard interpre-
tation, it implies a surprisingly large strangeness content
of the nucleon (defined below in eq. (26)), in contrast to
what one would expect on the basis of the OZI rule.

The precise knowledge of the value of σπN is, however,
of practical importance for numerous phenomenological
applications. E.g., the value of σπN enters the estimates
of counting rates in searches of the Higgs boson [10],
supersymmetric particles [11] or dark matter [12,13].
Therefore, independent and direct methods to access σπN
are welcome.

In this paper we would like to draw the attention to a
method relying on the soliton picture of the nucleon. The
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idea that baryons are different rotational excitations of the
same object —a classical soliton of the chiral field— leads
to numerous phenomenological relations among observ-
ables of different baryons, which are satisfied to a good
accuracy and are model independent, in the sense that
they are due to symmetries of the soliton and do not de-
pend on the dynamics of the respective model in which
the soliton is realized.

For σπN no such model-independent relation could be
found. All one can do —sticking to known baryons— is
to relate σπN to mass splittings (among baryons in the

SU(3) flavour octet JP = 1
2

+
) and the a priori unknown

strangeness content of the nucleon [1,2].

In other words, if one considers 1
2

+
octet and 3

2

+
decu-

plet baryons and explores soliton symmetries, the informa-
tion content is not sufficient to pin down σπN . The situa-
tion changes by including baryons from the next multiplet

suggested by the soliton picture —the 1
2

+
antidecuplet.

After the prediction of its mass and width by Diakonov,
Petrov and Polyakov [14], a candidate for the exotic “pen-
taquark” Θ+, the lightest member of the antidecuplet, was
observed by several groups [15–22]. More recently also the
finding of the second exotic baryon Ξ++

3/2 was reported [23].

In fact, in the soliton picture of the nucleon in linear
order in the strange-quark mass the pion-nucleon sigma-
term is unambiguously fixed in terms of mass splittings
among baryons in the octet, decuplet and antidecuplet.
Assuming that the exotic baryons Θ+ and Ξ3/2 are mem-
bers of the antidecuplet allows to extract σπN from the
spectrum of usual and exotic baryons. The result com-
pares well to the value of σπN deduced from the more
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Fig. 1. The “historical development” of the value for σπN in
the last two decades (the time axis is not linear).

recent analyses of pion-nucleon scattering data. The qual-
ity and accuracy of such an extraction are discussed.

The paper is organized as follows. In sect. 2, σπN is
introduced. Section 3 contains a brief description of the
soliton picture of baryons. In sect. 4, the relation between
baryon mass splittings and σπN is discussed. Section 5
contains the conclusions.

2 The pion-nucleon sigma-term

The nucleon sigma-term form factor σ(t) and the pion-
nucleon sigma-term σπN are defined as [1,2]

σ(t) ū(p′)u(p) = m 〈N ′| (ψ̄uψu + ψ̄dψd) |N〉 ,

σπN = σ(t)|t=0 , t = (p− p′)2 , (1)

where m = 1
2 (mu + md) and the conventions 〈N ′|N〉 =

2p0δ(3)(p − p
′) and ū(p)u(p) = 2MN are used. Strictly

speaking, in eq. (1) a “doubly isospin violating term” ∝
(mu −md)(ψ̄uψu − ψ̄dψd) is neglected.

The form factor σ(t) is a normalization scale-invariant
quantity, which describes the elastic scattering off the nu-
cleon due to the exchange of an isoscalar spin-zero particle.
All that is known about it experimentally is its value at the
so-called Cheng-Dashen point t = 2m2

π. A low-energy the-
orem [3] relates σ(2m2

π) to the isospin-even pion-nucleon
scattering amplitude, which can be inferred from pion-
pion and pion-nucleon scattering data by means of dis-
persion relations. Earlier analyses by Koch in 1982 [4] and
Gasser et al. in 1991 [5] gave, cf. fig. 1,

σ(2m2
π) =

{

(64± 8)MeV (1982) [4] ,

(60± 8)MeV (1991) [5] .
(2)

Gasser et al. [5] found from a dispersion relation analysis
supplemented by chiral constraints,

σ(2m2
π)− σ(0) = (15.2± 0.4) MeV , (3)

which gave for σπN a value of about 45MeV. (In ref. [24]
a result similar to eq. (3) was obtained from a calculation

in the chiral perturbation theory.) Modern analyses yield
a larger value for the form factor at the Cheng-Dashen
point:

σ(2m2
π) =







(88± 15)MeV (1999) [6] ,

(71± 9)MeV (2000) [7] ,

(79± 7)MeV (2002) [8] ,

(80−90)MeV (2002) [9] ,

(4)

which can be explained by the impact of the more recent
and accurate data [9]. Thus, recent analyses suggest

σπN ' (60–80)MeV . (5)

The analyses of pion-nucleon scattering data are involved
and it is difficult to control the systematic error both
of the extractions of σ(2m2

π) and its connection to
σπN [4–9]. However, there are no alternative methods to
determine σπN .

The sum rule σπN = m
∫ 1

0
dx (eu + ed + eū + ed̄)(x)

due to Jaffe and Ji [25], which connects σπN to the chi-
rally odd twist-3 nucleon distribution function ea(x), is
unfortunately useless as an alternative method to learn
about σπN . On top of practical difficulties to access chi-
rally odd (and twist-3) distribution functions in deeply
inelastic-scattering experiments [26], there is also a theo-
retical obstacle prohibiting such a “measurement” of σπN .
The sum rule is saturated by a δ(x)-type singularity. Such
singularities can be (and were) “observed” in theoretical
calculations [27,28], but in experiment they can manifest
themselves, in the best case, as a violation of the purely
theoretical sum rule [29].

In lattice QCD —the most direct approach to QCD—
the description of σπN is (at present) challenging. Direct
lattice calculations of σπN meet the problem that the
operator ψ̄ψ is not renormalization scale invariant [30].
An indirect method consists in exploring the Feynman-
Hellmann theorem [31]

σπN = m
∂MN

∂m
= m2

π

∂MN

∂m2
π

, (6)

to deduce σπN from the pion mass dependence of the nu-
cleon mass measured on the lattice [32–34]. In either case
one faces the problem of extrapolating lattice data from
presently mπ & 500MeV down to the physical value of
the pion mass which is subject to systematic uncertainties
which are difficult to estimate. Results of extrapolations
of most recent and accurate lattice data cover the range

σπN = (37+35
−13–73

+15
−15)MeV, (7)

depending on the extrapolation ansatz [35]. Chiral pertur-
bation theory can in principle provide a rigorous guideline
for the chiral extrapolation of lattice data —provided one
is able to control the convergence of the chiral expansion
up to mπ & 500MeV which seems feasible [36,37]. Chiral
perturbation theory does not, however, allow to compute
σπN itself, which serves to absorb counterterms and has
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to be renormalized anew in each order of the chiral expan-
sion.

The pion-nucleon sigma-term was discussed in numer-
ous models. See, e.g., [38,39] for overviews of more recent
works.

3 Baryons in the soliton picture

Since the early days of hadron physics, symmetry princi-
ples have provided powerful guidelines for the qualitative
classification of hadrons and the quantitative understand-
ing of the hadron mass spectrum.

In this context it is worthwhile to recall the relations
derived by Gell-Mann and Okubo [40,41] by considering
SU(3) flavour symmetry and its breaking by quark mass
terms up to linear order,

2MN + 2MΞ = 3MΛ +MΣ , (8)

M∆ −MΣ∗ =MΣ∗ −MΞ∗ =MΞ∗ −MΩ , (9)

which are fulfilled to within few percent. Historically,
eq. (9) was used to predict the mass of the Ω− baryon
with impressive accuracy [42].

The Gell-Mann–Okubo formulae relate baryon masses
within a multiplet, namely the octet in eq. (8) and the de-
cuplet in eq. (9), cf. figs. 2a and b. In order to relate masses
from different multiplets one needs, however, more than
the assumption of flavour symmetry. The limit of a large
number of colours Nc —first discussed by ’t Hooft [43]—
provides further symmetry arguments.

Though in nature Nc = 3 seems not to be large,
the multi-colour limit yields numerous phenomenologi-
cally successful relations [44]. In particular, the large-Nc

limit provides the basis for the picture of the nucleon as a
classical soliton of the chiral pion field [45]. In the Skyrme
model [46] or the chiral quark-soliton model [47], this pic-
ture is practically realized.

In these models the nucleon is a soliton of the pion field
USU(2) = exp(iτaπa) which is of the so-called hedgehog
shape

πa(x) =
xa

|x| P (|x|) , (10)

such that flavour and space rotations become equivalent.
Flavour SU(3) symmetry is considered by means of the
following “embedding” ansatz:

USU(3) =




USU(2)

0
0

0 0 1



 . (11)

In order to provide the classical soliton with spin, isospin
and strangeness quantum numbers, one has to consider
the rotated field

USU(3)(x, t) = R(t)USU(3)(x)R
†(t) (12)

with R(t) a time-dependent unitary SU(3) matrix. The
quantization of the soliton rotation leads to the following
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Fig. 2. Baryon multiplets. (a) The J
P = 1

2

+
octet. (b) The

J
P = 3

2

+
decuplet. (c) The J

P = 1

2

+
antidecuplet predicted

in the soliton picture of the nucleon with the two recently ob-
served exotic candidates. The numbers in brackets denote the
baryon masses (averaged over isospin where necessary) in MeV.

rotational Hamiltonian and constraint:

Hrot =
1

2IA

3∑

a=1

J2a +
1

2IB

7∑

a=4

J2a , J8 = − NcB

2
√
3
. (13)

In eq. (13) the Ja (a = 1, 2, . . . , 8) are the generators of
the SU(3) group and IA, IB are moments of inertia char-
acterizing the rotation of the soliton. The eigenfunctions
of Hrot —the rotational baryon wave functions with defi-
nite spin, isospin and strangeness quantum numbers— can
be expressed in terms of Wigner finite-rotation matrices.

Of importance is the constraint of the generator J8
in terms of the baryon number B = 1. In the Skyrme
model it is due to the Wess-Zumino term [45,48]. In the
chiral quark-soliton model it arises from a discrete bound-
state level in the spectrum of the single-quark Hamilto-
nian in the background of the static soliton field [49]. The
consequence of this constraint is that only SU(3) multi-
plets containing particles with hypercharge Y = 1 are al-
lowed. The lowest multiplets are the octet and decuplet of

JP = 1
2

+
and 3

2

+
baryons, respectively, cf. figs. 2a and b.

In order to describe mass splittings within different
multiplets it is necessary to introduce explicit chiral sym-
metry breaking by quark mass terms ∝ tr m̂(U − 1) in
the Skyrme model or ψ̄m̂ψ in the chiral quark-soliton
model, where m̂ is the SU(3) quark mass matrix with
mu = md = 0 and ms > 0 in the following.

The exploration of the spin-flavour symmetry of the
rotating soliton and its explicit breaking by linear quark
masses terms yields relations among observables of differ-
ent baryons, which are well satisfied in nature and model
independent —in the sense that they follow from symme-
try considerations alone and do not depend on details of
the dynamics, i.e. on how and in which theory the self-
consistent field U is determined [50,51,48].
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In particular, one finds that (for mu = md = 0) the
eight different baryon masses in the octet and decuplet
can be described in terms of 4 parameters:

– 2 parameters fix the mass splittings within the multi-
plets,

– 1 parameter characterizes the mass splitting between
octet and decuplet,

– 1 parameter fixes the absolute mass scale for one mul-
tiplet, cf. [48].

These parameters can, of course, be computed in a specific
model. However, what is more interesting in our context
is to find general model-independent (in the above sense)
relations, which allow to test phenomenologically the un-
derlying idea of the soliton symmetry.

By eliminating the 4 parameters, one obtains 4 rela-
tions among the eight baryon masses, namely the 3 Gell-
Mann–Okubo formulae, eqs. (8), (9), and, in addition, the
Guadagnini relation [48]:

8(MΞ∗ −MΣ∗) = 11MΛ − 8MN − 3MΣ . (14)

Equation (14) relates mass splittings within different mul-
tiplets to each other. It is satisfied to an impressive accu-
racy of 1%.

4 Exotic baryons and the pion-nucleon

sigma-term

The soliton symmetry as described by means of the ro-
tational Hamiltonian (13) allows also higher multiplets.
The next multiplet, after the octet and decuplet, is the

JP = 1
2

+
antidecuplet, see fig. 2c, which contains new

“exotic” baryons.
From the point of view of the soliton picture, there

is nothing “unusual” about the baryons referred to as Θ+

and Ξ3/2. In a quark model, however, their quantum num-
bers can only be constructed by including an additional
q̄q pair. Θ+ has isospin zero and strangeness S = 1 which
requires a combination uudds̄. The Ξ−−3/2 member of the

Ξ3/2 isospin-quadruplet has S = −2 and I3 = − 3
2 which

requires ūddss, etc.
The other members of the antidecuplet, denoted here

as ′′Σ′′ and ′′N ′′, have “usual” (in the quark model lan-
guage) quantum numbers. Candidates for these baryons
were discussed in ref. [52]. An unambiguous identification
of these states is difficult since mixings of the group the-
oretical states |′′N ′′〉 and |′′Σ′′〉 with resonances of other-
wise identical quantum numbers can occur. For our pur-
poses it is important to note that to linear order in ms

such mixings do not effect the mass splittings within the
octet and antidecuplet [52].

In the description of the masses of the antidecuplet
(always to linear order of quark masses) two additional
parameters appear:

– one characterizes the mass splittings,
– the other fixes the absolute mass scale.

The situation can be summarized as follows:

MN =M8 − 7A−B,
MΛ =M8 − 4A,

MΣ =M8 + 4A,

MΞ =M8 + 3A+B, (15)

M∆ =M10 −B,
MΣ∗ =M10,

MΞ∗ =M10 +B,

MΩ =M10 + 2B, (16)

MΘ+ =M10 − 2B + 2C,

M′′N ′′ =M10 −B + C,

M′′Ξ′′ =M10,

MΣ3/2
=M10 +B − C, (17)

where M8, M10 and M10 characterize the average mass of
the respective multiplet and A, B, C the splittings within
the multiplets.

The 12 baryon masses can thus be expressed by means
of 6 parameters. Eliminating these parameters, one ob-
tains in addition to the 3 Gell-Mann–Okubo, eqs. (8), (9),
and Guadagnini formulae, two further relations. The new
relations express an equal-mass splitting rule in the an-
tidecuplet,

MΣ3/2
−M′′Ξ′′ =M′′Ξ′′ −M′′N ′′ =M′′N ′′ −MΘ+ , (18)

which is analogous to relation (9) in the decuplet and was
also observed in a description of pentaquarks in chiral per-
turbation theory [53]. Thus, neither the mass splitting in
the new antidecuplet nor its absolute scale M10 can be
fixed in terms of known baryon masses.

As observed by Diakonov, Petrov and Polyakov (this
was actually an important ingredient in the prediction of
ref. [14]), the pion-nucleon sigma-term can be expressed
in terms of the same parameters, namely

ms

m
σπN = 3(35A+B + 4C) . (19)

At first glance, one could be worried by the appearance of
m = 1

2 (mu +md) in the denominator of eq. (19) since we
work here in the chiral limit for light quarksmu = md = 0.
However, one has to recall that σπN/m has a well-defined
chiral limit —also in soliton models, see, e.g., [38].

Eliminating the constants A, B, C in eq. (19), one
obtains

ms

m
σπN = 3(4MΣ − 3MΛ −MN )

︸ ︷︷ ︸

octet

+ 4(MΩ −M∆)
︸ ︷︷ ︸

decuplet

− 4(MΞ3/2
−MΘ+)

︸ ︷︷ ︸

antidecuplet

. (20)

Thus, the soliton picture connects σπN directly to the
spectrum of baryons. In linear order of ms, the relation
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is simple but the price to pay is that antidecuplet baryons
are involved. In principle, if the antidecuplet were estab-
lished, relation (20) would provide an attractive method
to extract σπN .

Several comments are in order. In chiral perturbation
theory ratios of quark masses can be considered as conven-
tion and scale independent quantities [54]. The framework
of chiral perturbation theory eventually allows to express
ratios of quark masses in terms of meson masses.

Equation (20) follows from evaluating linear ms effects
in the soliton model. Therefore, for the sake of consistency,
it is preferable to use the valuems/m ≡ 2ms/(mu+md) =
25.9 resulting from the consideration of chiral-symmetry-
breaking effects to linear order in quark masses [55,54].
Quadratic corrections yield ms/m = 24.4 ± 1.5 [54]
—which is a small numerical change in view of the ac-
curacy to which we work here.

Strictly speaking, in the above discussion in the soli-
ton model ms 6= 0, but for light quarks the chiral limit
was considered, i.e. m = (mu+md)/2 = 0. Thus, eq. (20)
gives the correct relation between ms limm→0 σπN/m on
the left-hand side and baryon mass splittings on the right-
hand side (in the limit m → 0). If one wished to include
finite-m effects, one should consider also corrections due
to mu 6= md and electromagnetic interactions on the same
footing, which are of comparable magnitude. In princi-
ple, the effect of such corrections can be minimized by
considering particular linear combinations of masses from
isospin multiplets instead of their averages as we do. How-
ever, for our purposes such corrections can be disregarded.
When deducing σπN from eq. (20) we shall assume that
the σπN/m varies little in the chiral limit.

In the literature it is currently being debated whether
the description of exotic baryons in the framework of soli-
ton models can be fully justified in the large-Nc limit [56–
60]. It was argued that —from the large-Nc limit point
of view— a consistent description of multiplets contain-
ing exotics requires to go beyond the rotating soliton: For
exotic multiplets vibrational modes may play an equally
important role, in contrast to the usual octet and decu-
plet. Equation (20) relates σπN to mass splittings within
multiplets. The rotating-soliton description of mass split-
tings within multiplets could still be consistent with large
Nc, e.g., when vibrational soliton modes were flavour inde-
pendent or negligibly small with respect to the rotational
zero modes. Then eq. (20) would be consistent also from
the large-Nc point of view. This issue, of course, deserves
further investigations.

Equation (20) can be rewritten by adding arbitrary
multiples of the following “zeros”:

11MΛ + 8(MΣ∗ −MN −MΞ∗)− 3MΣ = 0 , (21)

2MΞ∗ −MΩ −MΣ∗ = 0 , (22)

MΞ∗ +MΣ∗ −MΩ −M∆ = 0 , (23)

3MΛ − 2MN − 2MΞ +MΣ = 0 , (24)

which result from eqs. (8), (9), (14). Formally, this would
not change eq. (20). In practice, however, the “zeros” are
only approximate.

Equation (21) is the most exact “zero”, the right-
hand side (RHS) of eq. (21) is 1MeV if we insert baryon
masses (averaged over isospin). Thus, if we added 25×
this “zero”, we would change the value of σπN by 1MeV
only. A common-sense agreement could be to use eq. (21)
such that octet and decuplet (and uncertainties in their
description) contribute to σπN with comparable weight.
Equation (20) represents a possible choice —under the
aesthetical constraint to avoid awkward fractional coeffi-
cients.

Equations (22), (23) are less precise “zeros”. The RHS
of (22) is 9MeV and the RHS of (23) yields 14MeV. The
uncertainty these relations introduce in eq. (20) can be
estimated by using instead of 4(MΩ−M∆), e.g., 12(MΣ∗−
M∆) or 12(MΩ −MΞ∗). In this way, one obtains (1750±
90)MeV for the contribution of the decuplet in eq. (20).
The RHS of eq. (24) yields 27MeV. We estimate the total
contribution of the octet to eq. (20) as (1455± 150)MeV.

Turning to the antidecuplet, let us first point out that
by choosing exotic antidecuplet members in eq. (20) one
avoids a principal complication, namely how to identify
the non-exotic members in the new multiplet in view of
possible complicated mixing patterns [52,61]. (Recall that
to linear order in ms mixing does not effect mass differ-
ences within a multiplet.) Taking the candidates for Θ+

and Ξ3/2 for granted, we obtain for the contribution of the
antidecuplet in eq. (20) the value (1288 ± 150)MeV pre-
suming that the mass splitting formula in the antidecuplet
works no better and no worse than in other multiplets.

Thus, we obtain for the pion-nucleon sigma-term

σπN = (74± 12)MeV . (25)

Alternatively, we can perform a best fit for the param-
eters A, B, C in eqs. (15), (16) which gives, respec-
tively, (9± 2)MeV, (145± 12)MeV, (37± 10)MeV. From
(19) one then obtains σπN = (71 ± 14)MeV, in agree-
ment with (25). (For completeness, the average masses of
the multiplets are M8 = 1151MeV, M10 = 1382MeV,
M10 = 1754MeV.)

The result (25) is in reasonable agreement with the
value of σπN obtained from the recent dispersion relation
analyses of pion-nucleon scattering data, eq. (5). It is also
compatible with lattice results, eq. (7).

Several comments are in order. Firstly, we took the
candidates for Θ+ and Ξ3/2 for granted. However, in par-
ticular the Ξ3/2 state has not yet been confirmed. Instead
it was argued that the results of the NA49 experiment are
in conflict with earlier experiments [62]. Secondly, we as-
sumed that the soliton picture describes the antidecuplet
to within the same accuracy as the octet and the decu-
plet, which can be checked only after all (also non-exotic)
members of the antidecuplet will unambiguously be iden-
tified. Thirdly, the error in eq. (25) reflects the accuracy
to which the soliton picture describes the right-hand side
of eq. (20), which does not necessarily comprise the entire
uncertainty to which the soliton relation (20) itself is sat-
isfied. The accuracy of (20) could be checked if we knew
σπN (and all antidecuplet masses) precisely.

Thus, the error in (25) could be underestimated. How-
ever, this error does not appear unrealistic in view of the
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experience with other soliton relations —which connect,
e.g., baryon-meson coupling constants [45], magnetic mo-
ments [63] or hyperon decay constants [64], and which
typically hold to within an accuracy of (10–20)%. (The
Guadagnini formula (14) is another example.)

Finally, let us comment on the strangeness content of
the nucleon which is defined as

y =
2〈N |ψ̄sψs|N〉

〈N |ψ̄uψu + ψ̄dψd|N〉
. (26)

The value of y can be inferred from mass splittings of
the octet baryons. To linear-order quark masses one ob-
tains [1,2]

y = 1− m

ms −m
MΞ +MΣ − 2MN

σπN
. (27)

By means of eq. (20), one can express y entirely in terms of
baryon mass splittings —which yields y ≈ 0.6. Inclusion of
higher-order quark mass terms tends to decrease the value
of y [65] —which, however, still remains surprisingly large
from the point of view of the OZI rule. The latter would
imply the matrix element 〈N |ψ̄sψs|N〉 to be small.

The term “strangeness content” is, however, somehow
misleading. The scalar operator ψ̄sψs does not “count”
strange quarks unlike the (zero component of the) vector
operator ψ̄sγ

µψs does. Thus, strictly speaking, there is
no a priori reason for the matrix element 〈N |ψ̄sψs|N〉 to
be small (apart from the OZI rule). In spite of a large
strangeness content y, the total contribution of strange
quarks to the nucleon mass is reasonably small [66].

5 Conclusions

In the soliton picture of baryons in the linear treatment
of strange-quark mass terms, the pion-nucleon sigma-term
is simply related to the mass splittings in the octet, de-
cuplet and antidecuplet [14]. Presuming that the Θ+ and
Ξ−−3/2 exotic baryons [15–20,23,21,22] are members of the

antidecuplet, the pion-nucleon sigma-term was extracted
from the mass splittings of usual and exotic baryons and
found to be σπN = 74MeV with an accuracy of about (15–
20)%. This result is in good agreement with recent anal-
yses of pion-nucleon and pion-pion scattering data which
yield for the scalar-isoscalar form factor at the Cheng-
Dashen point σ(2m2

π) = (80–90)MeV [6–9].
However, the present experimental basis for this anal-

ysis cannot be considered as solid. The Ξ3/2 candidate
has not yet been confirmed by independent groups, cf.
ref. [62] for a critical discussion. The widths are not mea-
sured directly [67], and in particular spin and parity of
the exotic baryons are not established [68]. So it is not yet
clear whether the exotic states fit into the soliton picture
of the nucleon [14,69] or into other approaches [70–73].

If confirmed, the soliton picture would provide an ap-
pealing method to access σπN directly —with an uncer-
tainty comparable to the accuracy to which Gell-Mann–
Okubo, and Guadagnini mass relations are satisfied. In

future, with more information available on the antidecu-
plet, the uncertainty could be estimated more conserva-
tively than it was possible here. This method could provide
valuable information on σπN supplementary to σ(2m2

π)
extractions or direct lattice calculations. At the present
stage, the exercise presented here can be considered as a
consistency check of the soliton picture —as was presented
along the lines of ref. [52].

Further interesting issues are the inclusion of finite
light quark current masses, isospin breaking effects or
higher-order strange-quark mass corrections by extending
the methods elaborated in ref. [49].
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forschung of BMBF.
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